
1.1

1.2

1.3

1.3.1

1.3.2

1.3.3

1.3.4

1.4

1.4.1

1.5

1.6

1.7

Table	of	Contents
Introduction

Getting	Started

Using	SketchResponse

A	grading	script	template

A	simple	grading	script

A	complex	grading	script

Testing	your	script

Deployment

edX

Sketch	Tool	Configuration	Reference

Grader	Library	API	Reference

Offline	Documentation

1

SketchResponse
SketchResponse	is	a	Javascript/Python(2.5-2.7)	tool	for	drawing	and	evaluating
mathematical	functions.	It	was	designed	for	use	with	the	edX	online	courseware
platform.	However,	it	is	a	self-contained	application	that	can	be	integrated	into	other	web
platforms.

Demo
Before	we	get	into	the	technical	details,	try	out	a	SketchResponse	Demo	to	get	a	sense
of	what	SketchResponse	can	do.

Motivation
TODO	Martin	said	he	would	write	a	paragraph.

Features
Sketch	Tool	-	configurable	Javascript	front-end	with	plugin	components	to	provide
different	function	drawing	and	annotation	capabilities.	See	Sketch-Tool	Plugin
Configuration	for	a	description	of	the	available	plugins.
Grader	Library	-	python	back-end	that	provides	an	API	of	function	grading	methods
that	can	be	composed	to	construct	custom	grading	scripts.	See	Create	a	Simple
Grading	Script	for	a	tutorial	on	building	a	simple	grading	script.

Read	More
Sketch	Tool
Preliminary	results	using	SketchResponse	on	edX

Introduction

2

http://web.mit.edu/~jfrench/www/#demo
http://web.mit.edu/~jfrench/www/pdf/sketchinput_paper.pdf
http://web.mit.edu/~jfrench/www/pdf/sketch_results.pdf

Getting	started	from	zero

Prerequisites
To	work	with	the	SketchResponse	codebase,	there	are	a	few	technology	prerequisites
that	you	will	need	installed	on	your	machine.

In	order	to	clone	the	repository	you	will	need	to	install	Git	on	your	computer.	You
may	also	want	to	create	a	Github	account,	though	you	should	not	need	one	to
simply	clone	the	SketchResponse	repository	from	the	command	line.	You	will	need
to	be	logged	into	a	Github	account	if	you	want	to	clone	the	repository	through	your
browser.	You	will	also	need	a	Github	account	if	you	want	to	contribute	changes
back	to	the	project.

The	Sketch	Tool	front-end	is	built	using	Node.js	and	npm	(which	is	now	packaged
with	Node).	You	will	need	to	have	both	of	these	installed	on	your	computer.

The	Grader	Library	back-end	is	built	using	Python	and	relies	on	a	couple	python
packages	that	you	will	need	to	install.	We	recommend	you	use	the	pip	python
package	installer.	If	you	are	using	an	up-to-date	python	installation	you	probably
already	have	it	installed.	If	you	already	have	another	python	package	manager,	we
only	use	commonly	available	packages	so	it	should	not	be	a	problem.

Note	for	Windows	Users:	When	installing	Python	make	sure	to	enable	the	option	to
add	Python	to	the	path.	This	is	disabled	by	default	for	some	reason.

You	will	also	need	to	be	comfortable	using	the	command-line	to	execute
commands.

Note	for	Windows	Users:	You	should	use	the	Git	Bash	shell	to	execute	all	commands
in	this	document.	You	will	need	to	run	it	as	Administrator	to	execute	the	npm	and	pip
installation	commands	below.	You	may	also	need	to	run	the	Git	Bash	shell	as
Administrator	to	run	the	local	flask	testing	server.	To	do	this,	right-click	Git	Bash	from	the
Start	Menu	and	select	Run	as	Administrator.

If	you	have	statisfied	all	of	the	above	prerequisites,	then	we	can	start	working	on	the
codebase.

Getting	Started

3

https://git-scm.com/downloads
http://github.com
https://nodejs.org/en/download/
https://www.python.org/
https://pypi.python.org/pypi/pip
https://pip.pypa.io/en/stable/installing/

Getting	the	codebase
Clone	this	repository	to	the	directory	of	your	choice:

By	using	HTTPS:

$	git	clone	https://github.com/SketchResponse/sketchresponse.git

By	using	SSH:

$	git	clone	git@github.com:SketchResponse/sketchresponse.git

Running	either	of	the	above	commands	will	create	a	new	directory	called
SketchResponse.	This	SketchResponse	directory	is	your	copy	of	the	repository.	The	rest
of	this	document	will	refer	to	it	as	the	repo	directory.

Run	this	command	to	change	directories	to	the	repo	of	the	SketchResponse
repository.

$	cd	sketchresponse

Building	the	Sketch	Tool	front-end
Change	to	the	sketch_tool	directory:

$	cd	sketch_tool

Install	dependencies	listed	in	package.json	using		npm	.	If	you	are	in	Windows	make
sure	you	are	running	the	Git	Bash	shell	as	Administrator:

$	npm	install

JSPM	will	pull	in	additional	dependencies	automatically	on	a	post-install	script.

Build	a	distribution	of	the	Sketch	Tool.	The	distribution	directory	will	be	found	in	the
	/static/sketch_tool_dist/		directory.

$	npm	run	build

Getting	Started

4

http://jspm.io

Now	you	have	a	built	distribution	of	the	Sketch	Tool	front-end,	we	will	use	it	later	to	let	us
test	grading	scripts.	The	front-end	distribution	is	also	what	you	will	need	to	have	hosted
on	a	public	server	when	deploying	SketchResponse	for	your	application.

Grader	Library	back-end	dependencies
The	SketchResponse	grader	library	back-end	has	only	two	third	party	package
requirements,	which	are	listed	in	the	requirements.txt	file.

flask
numpy

You	will	need	to	be	in	the	repo	directory	of	the	codebase.	If	you	are	still	in	the
sketch_tool	directory,	run	the	following	command	to	change	back	to	the	repo	directory.

$	cd	..

Now	that	you	are	in	the	repo	directory,	you	can	run	the	following	command	to	install	the
required	python	packages.	If	you	are	in	Windows	make	sure	you	are	running	the	Git
Bash	shell	as	Administrator

$	pip	install	-r	requirements.txt

Numpy	is	used	to	support	the	mathematical	computations	of	the	grader	library.

Flask	is	required	to	run	a	local	server	for	convenience	when	implementing	and	testing
new	grading	scripts.	This	lets	you	test	your	scripts	without	having	to	deploy	them	to
another	server,	giving	you	more	immediate	feedback	and	simplifying	the	debugging
process.	See	the	Tutorial	Test	a	Grading	Script	on	a	Local	Server	for	details.

What's	next
Now	that	you	have	the	codebase	installed	and	ready	to	use,	lets	start	looking	at	how	to
configure	the	Sketch	Tool	and	implement	a	couple	grading	scripts.	Click	here.

Getting	Started

5

http://flask.pocoo.org/
http://www.numpy.org/

Using	SketchResponse
Using	SketchResponse	means	writing	python	scripts	to	provide	a	configuration	for	the
Sketch	Tool	front-end	and	an	implementation	of	the	grader	method	using	the	Grader
Library	back-end	API.	We	call	these	grading	scripts.

What	is	a	grading	script
Before	we	get	started	writing	scripts,	we	want	to	familiarize	ourselves	with	the	structure
of	a	grading	script.	Read	a	description	of	the	grading	script	template	here

Writing	our	first	grading	script
Now	that	we	know	the	pieces	that	must	be	implemented	in	the	grading	script,	lets	get
started	by	implementing	an	extremely	simple	script.	All	this	script	will	do	is	using	the
Grader	Library	to	evalutate	whether	or	not	drawn	function	represents	a	straight	line,	or
line	segment.	Click	here	to	follow	this	tutorial.

Writing	a	more	complicated	script
Okay	that	was	pretty	easy,	lets	try	building	something	a	little	more	realistic.	This	grader
script	will	be	for	a	relatively	simple	polynomial	function.	Click	here	to	follow	this	tutorial.

Testing	your	grading	scripts
As	you	probably	saw	at	the	end	of	each	of	our	grading	script	examples,	there	was	a	brief
description	of	testing	that	example	script	using	a	local	server.	More	details	on	how	to	run
that	process	can	be	found	here.

Where	to	go	from	here

Using	SketchResponse

6

As	you	might	expect,	there	are	a	lot	of	different	types	of	function	sketches	that	can	be
grading	using	this	tool,	however	the	current	grading	library	is	focused	on	introductory
calculus	type	problems.	We	are	working	to	expand	the	scope	of	the	functions	that	can	be
sketched	and	graded,	but	it	is	a	work	in	progress.

We	have	only	demonstrated	the	use	of	a	handful	of	the	grading	functions	provided	by
the	Grader	Library	Application	Programming	Interface(API).	Explore	the	API	to	see	what
other	grading	options	are	available.

Using	SketchResponse

7

Grading	script	template
A	grader	script	template	can	be	see	below.	There	are	two	components	of	the	grader
script:

1.	 Sketch	Tool	configuration
2.	 grader	method	implementation

The	details	of	each	of	these	components	are	examined	in	greater	detail	in	the	simple
and	complex(complex_grader.md)	grading	script	examples.	The	template	is	provided
here	for	reference.

You	can	also	find	a	copy	in	/grader_scripts/grader_template.py.

import	sketchinput
from	draft_code	import	GradeableFunction,	Asymptote

problemconfig	=	sketchinput.config({
				'width':	750,		#	set	the	pixel	width	of	the	front-end	interface
				'height':	420,		#	set	the	pixel	height	of	the	front-end	interface
				'xrange':	[-2.35,	2.35],		#	set	the	x-axis	displayed	range
				'yrange':	[-1.15,	1.15],		#	set	the	y-axis	displayed	range
				'xscale':	'linear',		#	only	linear	is	currently	implemented
				'yscale':	'linear',
				'plugins':	[
								#	all	instances	will	use	at	minimum	these	two	plugins
								{'name':	'axes'},
								{'name':	'freeform',	'id':	'f',	'label':	'Function	f(x)',
									'color':'blue'},
]
})

@sketchinput.grader
def	grader(f):		#	arguments	is	a	list	of	the	'id'	values	for	each	plugin

				return	True,	'Good	Job'

A	grading	script	template

8

A	simple	grader	script
This	document	will	walk	through	the	implementation	of	a	grader	script	for	a	simple
problem.	All	this	grader	will	do	is	test	whether	the	input	function	is	of	a	straight	line.

Each	grader	script	at	its	base	is	composed	of	two	components

	1.	The	problem	configuration
	2.	The	grader	function

Imports
There	are	two	SketchResponse	python	modules	that	must	be	imported	for	this	simple
example.	All	grader	scripts	must	import	the		sketchresponse		module.	There	are	two	other
modules	that	provide	different	grading	helper	functions.	In	this	case,	we	only	need	to
input	the		GradeableFunction		module	from		grader_lib	.

import	sketchresponse
from	grader_lib	import	GradeableFunction

Problem	configuration
The	problem	configuration	is	passed	to	the	javascript	front	end	to	define	the	size	and
scale	of	the	drawing	space	and	to	define	which	drawing	tools	are	available	for	the
problem.	The		sketchresponse.config()		function	takes	a	dict	of	configuration	options.

In	the	example	configuration	below,	the	first	seven	key/value	pairs	are	required:

	'width':	750		sets	the	pixel	width	of	the	drawing	space	as	750	pixels
	'height':	420		sets	the	pixel	height	of	the	drawing	space	to	420	pixels
	'xrange':	[-2.35,	2.35]		sets	the	numerical	range	of	the	x	axis
	'yrange':	[-1.15,	1.15]		sets	the	numerical	range	of	the	y	axis
	'xscale':	'linear'		sets	the	scale	of	the	x	axis	to	linear	(only	option	currently
implemented)
	'yscale':	'linear'		sets	the	scale	of	the	y	axis	to	linear	(only	option	currently
implemented)

A	simple	grading	script

9

	'coordinates':	'cartesian'	or	'polar'		sets	the	coordinate	system	used	by	the	axes
plugin	to	either	cartesian	or	polar

The	last	entry		'plugins'		takes	a	list	of	dicts	that	enable	the	specific	javascript	plugins
that	are	available	to	the	user.	All	plugins	are	declared	by	'name'.

The	'axes'	plugin	entry	is	the	simplest	plugin	to	enable.	It	has	no	mandatory	options	so
all	that	must	be	set	is	the	'name'.	This	plugin	enables	the	axes	in	the	drawing	space.	It
should	probably	be	on	by	default	no?

The	'freeform'	plugin	entry	enables	the	freeform	drawing	tool.	It	has	three	configuration
options	to	set:

	'id'		sets	the	name	of	the	argument	of	the	grader	callback	function	(described	in
the	next	section)	to	which	the	data	generated	by	this	plugin	is	passed.
	'label'		is	the	name	of	the	tool	displayed	to	the	user.
	'color'		is	the	color	used	to	render	the	drawn	function.

A	listing	of	all	the	built-in	plugins	can	be	found	at	SketchResponse	Plugins.

problemconfig	=	sketchresponse.config({
				'width':	750,
				'height':	420,
				'xrange':	[-2.35,	2.35],
				'yrange':	[-1.15,	1.15],
				'xscale':	'linear',
				'yscale':	'linear',
				'plugins':	[
								{'name':	'axes'},
								{'name':	'freeform',	'id':	'f',	'label':	'Function	f(x)',	'color':'blue'},
]
})

The	above	problem	configuration	settings	will	create	a	javascript	tool	that	looks
something	like	the	image	below.

A	simple	grading	script

10

Define	the	grader	callback	function

@sketchresponse.grader
def	grader(f):
				gf	=	GradeableFunction.GradeableFunction(f)

				if	not	gf.is_straight():
								return	False,	'Not	straight'

				return	True,	'Good	Job'

The	grader	callback	function	implements	the	function	passed	to	the	sketchinput	grader
to	evaluate	the	data	sent	from	the	javascript	tool.

The	arguments	of	the	grader	function	are	the		'id'		values	as	defined	in	the	problem
configuration	above.	E.g.	in	our	problem	configuration	we	enabled	the	freeform	drawing
tool	with	id	'f'	and	we	have	a	corresponding	argument	f	in	the	signature	of	the	function
that	will	be	automatically	unpacked.

Before	we	can	execute	any	grading	helper	functions	on	the	data,	we	must	instantiate	the
data	as	a		GradeableFunction	.

A	simple	grading	script

11

In	this	simple	example	all	we	are	checking	is	that	the	submitted	function	defines	a
straight	line	over	its	entire	domain.	We	are	not	checking	for	slope	of	the	line.	To	do	this
we	call	the	grader	helper	function		gf.is_straight()	.		is_straight()		returns	a	boolean
value.	The	full	API	documentation	for	the	grader	helper	functions	can	be	found	at
SketchResponse	API.

And	that's	it!	Those	two	simple	blocks	of	code	complete	our	first	grader	script.	Admittedly
this	particular	script	doesn't	do	much.	Check	out	the	Complex	Grader	example	for	a
more	realistic	grader	tutorial	on	an	example	math	problem.

Testing	the	script
Once	the	script	is	written,	you	can	run	the	script	in	the	local	testing	server.	See	the	Test
a	Grading	Script	on	a	Local	Server	tutorial	for	details	on	installing	and	running	the	testing
server.

There	is	already	a	copy	of	this	grader	script	in	the		grader_scripts		directory	so	all	you
need	to	do	is	start	the	server	and	point	your	browser	of	choice	at	the	url:

http://localhost:5000/simple_grader

You	should	see	the	configured	Sketch	Tool.	If	you	draw	a	straight(ish)	line	and	press	the
check	button	you	will	get	accept	message.	If	the	line	is	not	straight	enough,	you	will	get	a
reject	message.

A	simple	grading	script

12

https://SketchResponse.github.io/sketchresponse

A	more	realistic	grader	script
This	document	will	walk	through	the	implementation	of	a	grader	script	for	a	more
complicated	problem	than	the	Simple	Grader	Tutorial	tutorial.	The	problem	description
for	this	grader	script	is	below.

Sketch	the	function	f(x)	=	2x 	/	x 	-	1.

Label	vertical	and	horizontal	asymptotes,	extrema,	and	inflection	points.

This	problem	will	introduce	new	javascript	drawing	plugins	to	handle	labeling	asymptotes
and	points	and	some	new	backend	API	functions	that	can	be	used	to	evaluate	these
new	sources	of	data.

Imports
There	are	three	SketchResponse	python	modules	that	must	be	imported	for	this	simple
example.	As	you	saw	in	the	Simple	Grader	Tutorial	all	grader	scripts	must	import	the
	sketchresponse		module.	We	again	need	to	input	the		GradeableFunction		module	from
	grader_lib	,	but	also	need	to	import	the		Asymptote		module	to	support	the	asymptote
labeling	task.

import	sketchresponse
from	grader_lib	import	GradeableFunction,	Asymptote

Problem	configuration
The	problem	configuration	is	passed	to	the	javascript	front	end	to	define	the	size	and
scale	of	the	drawing	space	and	to	define	which	drawing	tools	are	available	for	the
problem.	The		sketchresponse.config()		function	takes	a	dict	of	configuration	options.

In	the	example	configuration	below,	the	first	seven	key/value	pairs	are	required.	In	this
configuration	we	increase	the	ranges	of	the	X	and	Y	axes	compared	to	the	Simple
Grader	Tutorial:

	'width':	750		sets	the	pixel	width	of	the	drawing	space	as	750	pixels
	'height':	420		sets	the	pixel	height	of	the	drawing	space	to	420	pixels

2 2

A	complex	grading	script

13

	'xrange':	[-3.5,	3.5]		sets	the	numerical	range	of	the	x	axis
	'yrange':	[-4.5,	4.5]		sets	the	numerical	range	of	the	y	axis
	'xscale':	'linear'		sets	the	scale	of	the	x	axis	to	linear	(only	option	currently
implemented)
	'yscale':	'linear'		sets	the	scale	of	the	y	axis	to	linear	(only	option	currently
implemented)
	'coordinates':	'cartesian'	or	'polar'		sets	the	coordinate	system	used	by	the	axes
plugin	to	either	cartesian	or	polar

The	last	entry		'plugins'		takes	a	list	of	dicts	that	enable	the	specific	javascript	plugins
that	are	available	to	the	user.	All	plugins	are	declared	by	'name'.

The	'axes'	and	'freeform'	plugin	usage	here	is	identical	to	the	Simple	Grader	Tutorial	and
is	explained	there	as	well	as	on	the	Plugin	Description	Page.

There	are	three	new	plugins	introduced	in	this	grading	script:	'vertical-line',	'horizontal-
line',	and	'point'.	The	declaration	of	these	plugins	is	very	similar	to	the	declaration	of	the
'freeform'	plugin,	however,	each	type	of	plugin	has	one	additional	parameter	that	needs
to	be	defined:	'dashStyle'	for	the	lines,	and	'size'	for	the	points.

The	'vertical-line'	plugin	entry	enables	the	a	labeling	tool	for	vertical	asymptotes.	It	has
four	configuration	options	to	set:

	'id'		sets	the	name	of	the	argument	of	the	grader	callback	function	(described	in
the	next	section)	to	which	the	data	generated	by	this	plugin	is	passed.
	'label'		is	the	name	of	the	tool	displayed	to	the	user.
	'color'		is	the	color	used	to	render	the	drawn	function.
	'dashStyle'		is	the	style	of	dashed	line	to	used	to	draw	the	asymptote.

The	'horizontal-line'	plugin	entry	enables	a	labeling	tool	for	horizontal	asymptotes.	Its
configuration	options	mirror	the	'vertical-line'.

In	this	problem,	we	want	students	to	label	both	extrema	points	and	the	inflection	point	for
the	function.	To	do	this	we	can	declare	two	instances	of	the	'point'	plugin	with	different
'id'	and	'label'	values.	The	'point'	plugin	has	four	configuration	options	to	set:

	'id'		sets	the	name	of	the	argument	of	the	grader	callback	function	(described	in
the	next	section)	to	which	the	data	generated	by	this	plugin	is	passed.
	'label'		is	the	name	of	the	tool	displayed	to	the	user.
	'color'		is	the	color	used	to	render	the	drawn	function.
	'size'		is	the	pixel	width	of	the	point	drawn	by	the	plugin.

A	complex	grading	script

14

A	listing	of	all	the	built-in	plugins	can	be	found	at	SketchResponse	Plugins.

problemconfig	=	sketchresponse.config({
				'width':	750,
				'height':	420,
				'xrange':	[-3.5,	3.5],
				'yrange':	[-4.5,	4.5],
				'xscale':	'linear',
				'yscale':	'linear',
				'plugins':	[
								{'name':	'axes'},
								{'name':	'freeform',	'id':	'f',	'label':	'Function	f(x)',	'color':'blue'},
								{'name':	'vertical-line',	'id':	'va',	'label':	'Vertical	asymptote',	'color':	'gra
y',	'dashStyle':	'dashdotted'},
								{'name':	'horizontal-line',	'id':	'ha',	'label':	'Horizontal	asymptote',	'color':	
'gray',	'dashStyle':	'dashdotted'},
								{'name':	'point',	'id':	'cp',	'label':	'Extremum',	'color':	'black',	'size':	15},
								{'name':	'point',	'id':	'ip',	'label':	'Inflection	point',	'color':'orange','size'
:	15}
]
})

The	above	problem	configuration	settings	will	create	a	javascript	tool	that	looks
something	like	the	image	below.

A	complex	grading	script

15

Define	the	grader	callback	function

Handling	the	input	data

@sketchresponse.grader
def	grader(f,cp,ip,va,ha):

				f	=	GradeableFunction.GradeableFunction(f)
				cp	=	GradeableFunction.GradeableFunction(cp)
				va	=	Asymptote.VerticalAsymptotes(va)
				ha	=	Asymptote.HorizontalAsymptotes(ha)
				ip	=	GradeableFunction.GradeableFunction(ip)

				msg=''

The	first	thing	that	the	grader	function	needs	to	do	is	format	the	input	data	so	that	Grader
Library	API	methods	of	interest	can	be	used	to	check	specific	features	of	the	input	data.

As	explained	in	the	Simple	Grader	Tutorial	the	data	is	passed	to	the	grader	function	as	a
dictionary	with	keys	equal	to	the	'id'	values	used	in	the	pluginconfig	above	so	the
dictionary	can	be	directly	unpacked	into	argument	variables	with	the	same	names.

The	'freeform'	and	'point'	data	are	evaluated	with	API	methods	in	the
	GradeableFunction.GradeableFunction		class.	The	'vertical-line'	and	'horizontal-line'	data	are
evaluted	with	API	methods	in	the		Asymptote.VerticalAsymptote		and
'Asymptote.HorizontalAsymptote`	classes	respectively.

The		msg		variable	will	be	used	when	evaluating	specific	checks	on	the	data	to	supply
check	specific	feedback	to	the	student	if	errors	are	found.

Checking	the	number	of	extrema	points	labeled

if	cp.get_number_of_points()	!=	1:
			if	cp.get_number_of_points()	==	3:
						msg	+=	'Are	you	sure	about	the	number	of	extrema?	(note	that	you	
should	not	label	the	endpoints	of	your	function)
'
			else:
				msg	+=	'Are	you	sure	about	the	number	of	extrema?
'

This	first	check	verifies	that	there	is	only	one	extremum	point	labeled	in	the	input	data.	It
also	checks	for	a	common	error	case	where	students	label	the	end	points	of	their
function	to	provide	more	helpful	feedback.

A	complex	grading	script

16

https://SketchResponse.github.io/sketchresponse

Checking	the	number	of	inflection	points

if	ip.get_number_of_points()	!=	0:
			msg	+=	'Are	you	sure	about	the	number	of	extrema?
'

This	particular	function	does	not	have	any	inflection	points	so	this	check	verifies	that	the
student	did	not	put	any	unnecessary	labels.

Checking	the	number	of	asymptotes

if	va.get_number_of_asyms()	!=	2:
			msg	+=	'	Are	you	sure	about	the	number	of	vertical	asymptotes?
'

if	ha.get_number_of_asyms()	!=	1:
			msg	+=	'	Are	you	sure	about	the	number	of	horizontal	asymptotes?</fo
nt>
'

This	function	should	have	2	vertical	asymptote	labels	and	1	horizontal	asymptote	label.	If
either	of	theses	checks	fail,	appropriate	feedback	messages	are	provided.

Checking	the	position	of	the	extremum	point

if	not	cp.has_point_at(x=0):
			msg	+=	'	Check	the	x	value	of	your	critical	point
'

The	extremum	point	label	for	the	function	should	be	at	position		x=0	.

Checking	the	positions	of	the	asymptotes

if	not	va.has_asym_at_value(-1)	or	not	va.has_asym_at_value(1):
			v1	=	va.closest_asym_to_value(-1)
			v2	=	va.closest_asym_to_value(1)
			msg	+=	'	Check	the	locations	of	your	vertical	asymptotes.		<b
r	/>'

if	not	ha.has_asym_at_value(2):
			ha1	=	ha.closest_asym_to_value(2)
			msg	+=	'	Check	the	locations	of	your	horizontal	asymptotes.	<
br	/>'

A	complex	grading	script

17

The	vertical	asymptotes	should	be	at	positions		x=-1		and		x=1	.	The	horizonal	asymptote
should	be	at	the	position		y=2	.	As	you	can	see,	you	can	also	get	references	to	the	actual
asymptote	values	if	you	wanted	to	use	them	for	further	checks,	or	to	customize	your
feedback	messages.

Checking	that	the	extremum	point	is	on	the	freeform	line

maxpt	=	cp.get_point_at(x=0)

if	not	f.has_value_y_at_x(maxpt.y,	maxpt.x):
			msg	+=	'	Make	sure	your	critical	points	lie	on	your	function!

'

Here	we	get	a	reference	to	the	extremum	point	and	use	that	point's	x	and	y	coordinates
to	make	sure	that	it	is	sitting	on	the	freeform	line	of	the	function.	The	grader	method
does	use	a	configurable	threshold	value	to	ensure	pixel	perfect	placement	is	not
necessary	to	pass	this	kind	of	check.

Checking	the	increasing	and	decreasing	ranges	of	the
freeform	line

increasing_ok	=	f.is_increasing_between(-4,	-1)	and	f.is_increasing_between(-1,	0)
decreasing_ok	=	f.is_decreasing_between(0,	1)	and	f.is_decreasing_between(1,	4)
if	not	(increasing_ok	and	decreasing_ok):
			msg	+=	'	Where	should	the	graph	be	increasing	and	decreasing?

'

The	freeform	line	drawn	by	the	student	should	be	increasing	over	the	ranges		(-4,-1)	
and		(-1,0)	.	It	should	also	be	decreasing	over	the	ranges		(0,1)		and		(1,4)	.	Again
these	grading	methods	have	configurable	thresholds	to	ensure	they	don't	unfairly	fail
student	input.

Checking	the	value	of	the	freeform	line	over	specific
ranges

A	complex	grading	script

18

if	not	f.is_greater_than_y_between(2,-4,-1):
			msg	+=	'	Your	function	seems	to	be	in	the	wrong	region	on	the	interv
al	(-4,-1)
'

if	not	f.is_greater_than_y_between(2,1,4):
			msg	+=	'	Your	function	seems	to	be	in	the	wrong	region	on	the	interv
al	(1,4)
'

if	not	f.is_less_than_y_between(0,-1,1):
			msg	+=	'	Your	function	seems	to	be	in	the	wrong	region	on	the	interv
al	(-1,1)
'

Here	we	are	performing	three	sanity	checks	on	the	values	of	the	freeform	line	over
specific	ranges.	First,	we	check	that		f(x)	>=	2		over	the	range		(-4,-1)	.	Second,	we
check	that		f(x)	>=	2		over	the	range		(1,4)	.	Lastly,	we	check	that		f(x)	<=	0		over	the
range		(-1,1)	.

Checking	the	curvature	of	the	freeform	line

curvature_up_ok	=	f.has_positive_curvature_between(-4,	-1)	and	f.has_positive_curvature_be
tween(1,	4)
curvature_down_ok=	f.has_negative_curvature_between(-1,1)

if	not	(curvature_up_ok	and	curvature_down_ok):
			msg	+=	'	Where	is	the	function	convave	up	and	concave	down?<b
r	/>'

The	final	checks	we	will	perform	make	sure	that	the	freeform	line	has	the	expected
curvature	over	specific	ranges.	The	curvature	should	be	positive	over	the	ranges
	(-4,-1)		and		(1,4)	.	The	curvature	should	be	negative	over	the	range		(-1,1)	.

Putting	it	all	together

Combining	all	the	code	above	into	a	single	function	gives	us	the	following.	You	will
notice	that	the	error	message	variable		msg		is	tested	at	multiple	points	during	the
evaluation	and	used	as	an	early	failure	condition.	If	the	numbers	of	expected	labels	are
not	correct,	then	future	checks	are	likely	to	not	be	able	to	run	on	the	data	so	returning
early	ensures	the	student	gets	good	feedback.

import	sketchresponse
from	grader_lib	import	GradeableFunction,	Asymptote

A	complex	grading	script

19

problemconfig	=	sketchresponse.config({
				'width':	750,
				'height':	420,
				'xrange':	[-3.5,	3.5],
				'yrange':	[-4.5,	4.5],
				'xscale':	'linear',
				'yscale':	'linear',
				'plugins':	[
								{'name':	'axes'},
								{'name':	'freeform',	'id':	'f',	'label':	'Function	f(x)',	'color':'blue'},
								{'name':	'vertical-line',	'id':	'va',	'label':	'Vertical	asymptote',	'color':	'gra
y',	'dashStyle':	'dashdotted'},
								{'name':	'horizontal-line',	'id':	'ha',	'label':	'Horizontal	asymptote',	'color':	
'gray',	'dashStyle':	'dashdotted'},
								{'name':	'point',	'id':	'cp',	'label':	'Extremum',	'color':	'black',	'size':	15},
								{'name':	'point',	'id':	'ip',	'label':	'Inflection	point',	'color':'orange','size'
:	15}
]
})

@sketchresponse.grader
def	grader(f,cp,ip,va,ha):

				f	=	GradeableFunction.GradeableFunction(f)
				cp	=	GradeableFunction.GradeableFunction(cp)
				va	=	Asymptote.VerticalAsymptotes(va)
				ha	=	Asymptote.HorizontalAsymptotes(ha)
				ip	=	GradeableFunction.GradeableFunction(ip)

				msg=''

				if	cp.get_number_of_points()	!=	1:
								if	cp.get_number_of_points()	==	3:
												msg	+=	'Are	you	sure	about	the	number	of	extrema?	(note	tha
t	you	should	not	label	the	endpoints	of	your	function)
'
								else:
												msg	+=	'Are	you	sure	about	the	number	of	extrema?
'

				if	ip.get_number_of_points()	!=	0:
								msg	+=	'Are	you	sure	about	the	number	of	extrema?
'

				if	va.get_number_of_asyms()	!=	2:
								msg	+=	'	Are	you	sure	about	the	number	of	vertical	asymptotes?<
/font>
'

				if	ha.get_number_of_asyms()	!=	1:
								msg	+=	'	Are	you	sure	about	the	number	of	horizontal	asymptotes
?
'

A	complex	grading	script

20

				if	msg	!=	'':
								return	False,	msg
				else:
								if	not	cp.has_point_at(x=0):
												msg	+=	'	Check	the	x	value	of	your	critical	point
'
								if	not	va.has_asym_at_value(-1)	or	not	va.has_asym_at_value(1):
												v1	=	va.closest_asym_to_value(-1)
												v2	=	va.closest_asym_to_value(1)
												msg	+=	'	Check	the	locations	of	your	vertical	asymptotes.		

'

								if	not	ha.has_asym_at_value(2):
												ha1	=	ha.closest_asym_to_value(2)
												msg	+=	'	Check	the	locations	of	your	horizontal	asymptotes.
	
'

								maxpt	=	cp.get_point_at(x=0)

								if	not	f.has_value_y_at_x(maxpt.y,	maxpt.x):
												msg	+=	'	Make	sure	your	critical	points	lie	on	your	functio
n!
'

								increasing_ok	=	f.is_increasing_between(-4,	-1)	and	f.is_increasing_between(-1,	0)
								decreasing_ok	=	f.is_decreasing_between(0,	1)	and	f.is_decreasing_between(1,	4)
								curvature_up_ok	=	f.has_positive_curvature_between(-4,	-1)	and	f.has_positive_curv
ature_between(1,	4)
								curvature_down_ok=	f.has_negative_curvature_between(-1,1)

								if	not	(increasing_ok	and	decreasing_ok):
												msg	+=	'	Where	should	the	graph	be	increasing	and	decreasin
g?
'

								if	not	f.is_greater_than_y_between(2,-4,-1):
												msg	+=	'	Your	function	seems	to	be	in	the	wrong	region	on	t
he	interval	(-4,-1)
'

								if	not	f.is_greater_than_y_between(2,1,4):
												msg	+=	'	Your	function	seems	to	be	in	the	wrong	region	on	t
he	interval	(1,4)
'

								if	not	f.is_less_than_y_between(0,-1,1):
												msg	+=	'	Your	function	seems	to	be	in	the	wrong	region	on	t
he	interval	(-1,1)
'

								if	not	(curvature_up_ok	and	curvature_down_ok):
												msg	+=	'	Where	is	the	function	convave	up	and	concave	down?

'

				if	msg	==	'':

A	complex	grading	script

21

								return	True,'Good	Job'
				else:
								return	False,	msg

Testing	the	script
Once	the	script	is	written,	you	can	run	the	script	in	the	local	testing	server.	See	the	Test
a	Grading	Script	on	a	Local	Server	tutorial	for	details	on	installing	and	running	the	testing
server.

There	is	already	a	copy	of	this	grader	script	in	the		grader_scripts		directory	so	all	you
need	to	do	is	start	the	server	and	point	your	browser	of	choice	to	the	url:

http://localhost:5000/complex_grader

You	should	see	the	configured	Sketch	Tool.	If	you	sketch	the	function	shown	at	the
beginning	of	this	tutorial,	you	should	see	an	accept	message.	Any	other	sketches	should
return	a	reject	message.

A	complex	grading	script

22

How	To	Test	Your	Grading	Scripts
Locally
The	SketchResponse	tool	is	designed	to	be	used	as	a	web	application	so	when	it	is
properly	installed	the	Sketch	Tool	and	Grader	Lib	will	be	hosted	on	a	server	somewhere.
However,	while	you	are	designing	and	implementing	a	grading	script	for	a	particular
problem,	it	is	very	convenient	to	be	able	to	test	it	on	a	locally	running	version	of	the
SketchResponse	tool.	This	allows	you	to	get	immediate	feedback	on	how	well	your
grading	script	works	without	having	to	upload	anything	to	your	server.

Flask
The	local	testing	server	is	implemented	using	Flask.	If	you	do	not	have	flask	you	will
need	to	install	it,	which	is	easily	done	by	running	the	command.	If	you	are	in	Windows
make	sure	you	are	running	the	Git	Bash	shell	as	Administrator.

$	pip	install	-r	requirements.txt

Running	the	server

Building	the	sketch	tool	distribution

Before	you	can	run	the	local	server,	you	need	to	build	a	local	copy	of	the	sketch	tool.	If
you	have	already	done	this	and	you	have	not	modified	the	sketch	tool	in	the	interim	you
can	skip	this	step.	Otherwise,	follow	the	instructions	here	for	details	on	building	the
sketch	tool	distribution.

Start	the	grader	local	server

To	run	the	local	server,	make	sure	the	grading	script	you	are	testing	is	in	the
	grading_scripts		directory.	Then	run	the	following	command	from	the	repository	root
directory.	If	you	are	in	Windows	you	may	need	to	run	the	Git	Bash	shell	as	Administrator
to	interact	with	the	local	server.

Testing	your	script

23

http://flask.pocoo.org/

$	python	server.py

You	should	see	a	message	telling	you	that	the	server	is	running	on
	http://localhost:5000	.

Testing	your	script
Open	your	web	browser	of	choice	and	put	the	following	in	the	url	bar,	where	is	the
filename	of	your	grader	script	(leaving	the	.py	extension	off):

$	http://localhost:5000/<grader	script	name>

You	will	now	see	a	locally	running	copy	of	the	SketchResponse	Sketch	Tool	using	the
configuration	options	you	defined	in	your	grading	script.	You	can	use	it	to	draw	test	input
for	your	grader	script	and	press	the	'Check'	button	in	the	bottom	left	corner	to	run	your
grader	on	the	functions	you	have	drawn.

Testing	your	script

24

Testing	your	script

25

Deploying	SketchResponse
SketchResponse	was	designed	to	be	a	stand-alone	application	that	should	be	relatively
easy	to	integrate	into	whatever	application	you	have.	The	details	of	deploying	to	custom
applications	are	unfortunately	beyond	the	scope	of	this	documentation.	Needless	to	say,
you	will	need	to	provide	hosting	for	the	Sketch	Tool	front-end	distribution,	the	python
Grader	Library	back-end,	and	a	small	amount	of	static	html	to	tie	it	all	together	(see	the
/static/	directory	and	/templates/index_sketch_tool.html	in	the	codebase	for	a	simple
example	of	this).

However,	as	SketchResponse	was	designed	with	the	intention	of	using	it	to	develop
online	courses	for	mitX	and	edX,	there	is	a	quickstart	guide	to	deploying	your
SketchResponse	problems	to	edX	below.

Deploying	to	edX

Deployment

26

edX	Quick	Start	Guide	to	Deploying
SketchResponse	Problems
This	document	is	a	brief	guide	on	how	to	use	SketchResponse	with	edX.	There	are	two
sets	of	information	that	you	need	to	deploy:

1.	 the	python	grader	library	that	support	your	grading	scripts
2.	 the	problem	XML	(which	will	include	your	grading	scripts).

Uploading	the	Grader	Library
1.	 Run	the	following	command	from	the	root	of	the	SketchResponse	repository:

$	python	edxzip.py

This	will	create	a	zip	archive	called		python_lib.zip		in	the	root	directory	of	the
repository.

2.	 In	edX	Studio,	from	the	"Content"	menu	at	the	top	of	the	page,	select	"Files	&
Uploads".

3.	 Click	the	green	"+	Upload	New	File"	button	and	upload	the		python_lib.zip		file.

Notes

If	your	workflow	involves	importing	an	XML	course,	you	may	still	need	to	follow	these
steps	in	Studio;		python_lib.zip		may	not	be	detected	automatically	in	the	static/	folder	of
your	course.	The	steps	are	not	required	every	time	you	upload	your	course,	though;
	python_lib.zip		won't	be	deleted	by	course	uploads.

Creating	SketchResponse	problems
1.	 Create	a	new	Advanced	Problem	in	Studio	(or	a	if	authoring	in	XML).
2.	 Use	the	following	problem	template,	replacing	the	appropriate	sections	with	your

own	content:

edX

27

				<problem>
				<p>Replace	this	text	with	your	own	problem	description.</p>

				<script	type="loncapa/python"><![CDATA[

				#	Include	your	grading	script	here	(beginning	with	import	sketchresponse)

]]></script>

				<customresponse	cfn="grader"	expect="See	solution.">
								<jsinput	width="800"	height="550"	gradefn="getGrade"	get_statefn="getState"	set_st
atefn="setState"	html_file="https://sketch-response.surge.sh/sketch-tool/v1/index.html#$pr
oblemconfig"	sop="false"/>
				</customresponse>

				<solution>

				<p>Provide	the	solution	to	your	problem	here.	You	may	want	to	include	an	image	of	a	co
rrect	solution	as	well	as	text.</p>

				</solution>

				</problem>

Notes

Unlike	most	other	input	types,	you	cannot	combine	SketchResponse	problems	with	other
input	types	(or	other	SketchResponse	inputs)	in	a	single	tag;	doing	so	will	lead	to
students	losing	attempts	and	other	unexpected	behavior.

edX

28

Problem	Configuration	Plugins
This	document	provides	a	description	of	all	the	SketchResponse	plugins	and	how	to
declare	them.	Declaring	any	plugin	in	a	grader's	problem	configuration	enables	the
selection	of	that	plugin	in	the	javascript	front-end	tool.

Any	of	these	plugins	can	be	declared	multiple	times	causing	multiple	instances	of	the
plugin	to	be	enabled	in	the	javascript	tool.	See	the	Complex	Grader	Example	for	an
example	where	this	is	used.

Table	of	Contents
Axes
Background
Freeform
Point
Line	Segment
Vertical	Asymptote
Horizontal	Asymptote
Image

Axes
Adds	horizontal	and	vertical	axes,	and	a	grid	system.	It	has	one	parameter	that	must	be
defined:

	'name':	'axes'		-	the	name	key	must	have	the	value	'axes'.

It	also	has	optional	parameters	that	depend	on	the	'coordinates'	option	defined	one	level
up:

If	'cartesian'	is	chosen,	the	following	parameters	will	take	effect:

	'xmajor':	<number>(default:	none)		-	the	major	tick	spacing	for	the	x	axis
	'ymajor':	<number>(default:	none)		-	the	major	tick	spacing	for	the	y	axis
	'xminor':	<number>(default:	none)		-	the	minor	tick	spacing	for	the	x	axis
	'yminor':	<number>(default:	none)		-	the	minor	tick	spacing	for	the	y	axis

Sketch	Tool	Configuration	Reference

29

Note:	if	some	(or	all)	of	the	above	are	missing,	an	automatic,	best-fitting	value	will	be
generated	as	a	default.

If	'polar'	is	chosen,	the	following	parameters	will	take	effect:

	'rrange':	<number>(default:	10)		-	the	distance	between	the	origin	and	the	outer	circle
	'rmajor':	<number>(default:	1)		-	the	distance	between	the	circles	of	the	polar	grid
	'thetamajor':	<number>(default:	30)		-	the	angle	(in	degrees)	between	the	rays	of	the
polar	grid

E.g.

{'name':	'axes',	'rrange':	'20',	'rmajor':	'5',	thetamajor:	'10'}

Background

[Deprecated]	-	Use	the	image	plugin	instead.

Sets	the	background	image	for	the	drawing	canvas.	The	default	is	an	grid.

	'name':	'background'		-	the	name	key	must	have	the	value	'background'
	'src':	<path	to	file>		-	a	path	string	to	the	image	file	to	use

E.g.

{'name':	'background'
	'src':	'/static/app/axes.png'}

Freeform
The	Freeform	plugin	adds	a	button	to	the	tool	to	draw	freeform	lines	on	the	axes.	It	has
four	parameters	that	must	be	defined:

	'name':	'freeform'		-	the	name	key	must	have	the	value	'freeform'
	'id':	<unique	identifier	string>		-	the	id	key	must	have	a	unique	value.	This	value	is
used	as	the	key	for	the	data	created	by	this	plugin	in	the	JSON	string	returned	to	the
grader	function.
	'label':	<descriptive	string>		-	the	label	key	should	be	given	a	descriptive	string.
This	string	will	be	used	to	label	the	selection	button	in	the	javascript	front-end	tool.

Sketch	Tool	Configuration	Reference

30

	'color':	<a	color	string>		-	the	color	key	should	be	give	a	color	string	that	javascript
recognizes.	A	listing	of	color	names	can	be	found	here.

E.g.

{'name':	'freeform',	'id':	'f',	'label':	'Function	f(x)',	'color':'blue'}

Point
The	Point	plugin	adds	a	button	to	the	tool	to	draw	points	on	the	axes.	It	has	five
parameters	that	must	be	defined:

	'name':	'point'		-	the	name	key	must	have	the	string	value	'point'
	'id':	<unique	identifier	string>		-	the	id	key	must	have	a	unique	value.	This	value	is
used	as	the	key	for	the	data	created	by	this	plugin	in	the	JSON	string	returned	to	the
grader	function.
	'label':	<descriptive	string>		-	the	label	key	should	be	given	a	descriptive	string.
This	string	will	be	used	to	label	the	selection	button	in	the	javascript	front-end	tool.
	'color':	<a	color	string>		-	the	color	key	should	be	give	a	color	string	that	javascript
recognizes.	A	listing	of	color	names	can	be	found	here.
	'size':	<int>		-	the	size	key	must	be	given	an	integer	value.	It	sets	the	pixel
diameter	of	the	point	drawn	by	the	plugin.

It	also	has	an	optional	parameter:

	'hollow':	<boolean>		-	if	set	to	true,	the	point	will	be	drawn	hollow.	Default	value:
false.

E.g.

{'name':	'point',	'id':	'cp',	'label':	'Extremum',	'color':	'black',	'size':	15,	'hollow':	
True}

Line	Segment
The	Line	Segment	plugin	adds	a	button	to	the	tool	to	draw	line	segments	on	the	axes.
Optionally	these	can	have	a	customizable	arrow	head	and	can	be	constrained	in	their
direction	(horizontally	or	vertically)	and	their	length.	The	plugin	behaves	as	follows:

Sketch	Tool	Configuration	Reference

31

http://www.w3schools.com/colors/colors_names.asp
http://www.w3schools.com/colors/colors_names.asp

Pointer	press	and	then	drag	will	create	a	dynamic	line	segment	from	initial	press
location	to	current	drag	location.	On	drag	release,	the	line	segment	will	be	drawn
from	initial	press	to	drag	release.

Pointer	click	will	create	a	point.	Two	behaviors	are	then	possible:

A	subsequent	pointer	click	will	create	a	line	segment	from	first	pointer	click	to
second	pointer	click.

A	subsequent	pointer	press	and	drag	will	create	a	dynamic	line	segment	from
initial	click	location	to	current	drag	location.	On	drag	release,	the	line	segment
will	be	drawn	from	initial	click	to	drag	release.

It	has	five	parameters	that	must	be	defined:

	'name':	'line-segment'		-	the	name	key	must	have	the	value	'line-segment'.
	'id':	<unique	identifier	string>		-	the	id	key	must	have	a	unique	value.	This	value	is
used	as	the	key	for	the	data	created	by	this	plugin	in	the	JSON	string	returned	to	the
grader	function.
	'label':	<descriptive	string>		-	the	label	key	should	be	given	a	descriptive	string.
This	string	will	be	used	to	label	the	selection	button	in	the	javascript	front-end	tool.
	'color':	<a	color	string>		-	the	color	key	should	be	give	a	color	string	that	javascript
recognizes.	A	listing	of	color	names	can	be	found	here.
	'dashStyle':	<line	dash	string>(default:	'solid')		-	the	dashStyle	key	should	have	a
string	description	of	the	dash	style	to	used	for	drawing	the	line.	Possible	values:
'dashed',	'longdashed',	'dotted',	'dashdotted',	'solid'.

It	also	has	optional	parameters:

	'directionConstraint':	<a	constraint	string>		-	the	directionConstraint	key	should	be	a
string	describing	the	constraint.	Possible	values:	'horizontal',	'vertical'.

	'lengthConstraint':	<int>		-	the	lengthConstraint	key	must	be	given	an	integer	value.
It	sets	the	maximum	pixel	length	of	the	line	segment	drawn	by	the	plugin.

	'arrowHead':	<object>		-	the	arrowHead	key	must	be	an	object	containing	the
following	keys:

	'length':	<int>		-	the	length	key	must	be	given	an	integer	value.	It	sets	the
length	of	the	arrow	head	of	the	line	segment	drawn	by	the	plugin.
	'base':	<int>		-	the	base	key	must	be	given	an	integer	value.	It	sets	the	base
width	of	the	arrow	head	of	the	line	segment	drawn	by	the	plugin.

Sketch	Tool	Configuration	Reference

32

http://www.w3schools.com/colors/colors_names.asp

E.g.

{'name':	'line-segment',	'id':	'ls',	'label':	'Line	segment',	'color':	'gray',	'dashStyle'
:	'solid',	'directionConstraint':	'horizontal',	'lengthContraint':	50,	'arrowHead':	{'leng
th':	10,	'base':	7}

Vertical	Asymptote
The	Vertical	Asymptote	plugin	adds	a	button	to	the	tool	to	draw	vertical	lines	on	the
axes.	It	has	five	parameters	that	must	be	defined:

	'name':	'vertical-line'		-	the	name	key	must	have	the	value	'vertical-line'
	'id':	<unique	identifier	string>		-	the	id	key	must	have	a	unique	value.	This	value	is
used	as	the	key	for	the	data	created	by	this	plugin	in	the	JSON	string	returned	to	the
grader	function.
	'label':	<descriptive	string>		-	the	label	key	should	be	given	a	descriptive	string.
This	string	will	be	used	to	label	the	selection	button	in	the	javascript	front-end	tool.
	'color':	<a	color	string>		-	the	color	key	should	be	give	a	color	string	that	javascript
recognizes.	A	listing	of	color	names	can	be	found	here.
	'dashStyle':	<line	dash	string>(default:	'solid')		-	the	dashStyle	key	should	have	a
string	description	of	the	dash	style	to	used	for	drawing	the	line.	Possible	values:
'dashed',	'longdashed',	'dotted',	'dashdotted',	'solid'.

E.g.

{'name':	'vertical-line',	'id':	'va',	'label':	'Vertical	asymptote',	'color':	'gray',	'das
hStyle':	'dashdotted'}

Horizontal	Asymptote
The	Horizontal	Asymptote	plugin	adds	a	button	to	the	tool	to	draw	horizontal	lines	on	the
axes.	It	has	five	parameters	that	must	be	defined:

	'name':	'horizontal-line'		-	the	name	key	must	have	the	value	'horizontal-line'
	'id':	<unique	identifier	string>		-	the	id	key	must	have	a	unique	value.	This	value	is
used	as	the	key	for	the	data	created	by	this	plugin	in	the	JSON	string	returned	to	the
grader	function.
	'label':	<descriptive	string>		-	the	label	key	should	be	given	a	descriptive	string.

Sketch	Tool	Configuration	Reference

33

http://www.w3schools.com/colors/colors_names.asp

This	string	will	be	used	to	label	the	selection	button	in	the	javascript	front-end	tool.
	'color':	<a	color	string>		-	the	color	key	should	be	give	a	color	string	that	javascript
recognizes.	A	listing	of	color	names	can	be	found	here.
	'dashStyle':	<line	dash	string>(default:	'solid')		-	the	dashStyle	key	should	have	a
string	description	of	the	dash	style	to	used	for	drawing	the	line.	Possible	values:
'dashed',	'longdashed',	'dotted',	'dashdotted',	'solid'.

E.g.

{'name':	'horizontal-line',	'id':	'ha',	'label':	'Horizontal	asymptote',	'color':	'gray',	
'dashStyle':	'dashdotted'}

Image
Adds	an	image	to	the	drawing	canvas.

	'name':	'image'		-	the	name	key	must	have	the	value	'image'
	'scale':	<number>(default:	1)		-	multiplier	to	scale	the	size	of	the	image.
	'align':	<alignment	string>(default:	'')		-	possible	values,	'top',	'left',	'bottom',	'right',
''.
	'offset':	[<number>,<number>]		-	array	of	x,	y	offsets	(default	value[0,	0]).
	'src':	<path	to	image	file>		-	the	path	to	the	image	file	to	insert.

E.g.

{'name':	'image',	'align':	'bottom',	'src':	'/static/image.png'}

Sketch	Tool	Configuration	Reference

34

http://www.w3schools.com/colors/colors_names.asp

Grading	Library	Application
Programming	Interface	(API)
The	SketchResponse	API	was	designed	to	name	grading	functions	as	clearly	as
possible.	We	recognize	that	our	primary	users	are	not	necessarily	going	to	be
professional	programmers	and	so	detailed,	readable,	explicit	library	function	names	are
prioritized.

As	you	explore	the	API,	you	will	find	that	almost	all	of	the	functionality	provided	allows
for	the	user	to	customize	thresholds	to	determine	correctness	of	given	input.	There	are
default	thresholds	provided	for	all	of	the	functionality	of	this	api,	which	has	been
determined	through	experimentation	and	actual	usage	data	from	students	in	MIT	and
edX	courses.

There	are	three	modules	that	you	may	interact	with	in	the	Grader	Library	API.	The
majority	of	the	grading	functions	are	accessed	through	the	GradeableFunction	module.
Functionality	to	do	with	evaluating	asymptotes	is	found	in	the	Asymptote	module.	A
handful	of	grading	functions	either	take	Point	objects	as	arguments,	or	return	them	as
results	so	a	brief	description	of	it	is	included	here	as	well.

The	Grader	Library	API	is	also	hosted	separately	with	a	searchable	index	here.	Direct
links	to	the	individual	modules	are	below.

Asymptote
LineSegment
GradeableFunction
Point

Grader	Library	API	Reference

35

http://sketchresponse.github.io/sketchresponse
http://sketchresponse.github.io/sketchresponse/grader_lib.html#module-grader_lib.Asymptote
http://sketchresponse.github.io/sketchresponse/grader_lib.html#module-grader_lib.LineSegment
http://sketchresponse.github.io/sketchresponse/grader_lib.html#module-grader_lib.GradeableFunction
http://sketchresponse.github.io/sketchresponse/grader_lib.html#module-grader_lib.Point

Offline	SketchResponse	Documents
For	convenience,	PDF	copies	of	both	this	documentation	and	the	API	documentation
can	be	found	at	the	links	below.

SketchResponse.pdf
SketchResponseAPI.pdf

Offline	Documentation

36

	Introduction
	Getting Started
	Using SketchResponse
	A grading script template
	A simple grading script
	A complex grading script
	Testing your script

	Deployment
	edX

	Sketch Tool Configuration Reference
	Grader Library API Reference
	Offline Documentation

